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Abstract. We study the proximity effect in hybrid structures consisting of superconductor and ferromag-
netic insulator separated by a normal diffusive metal (S/N/FI structures). These stuctures were proposed
to realize the absolute spin-valve effect. We pay special attention to the gaps in the density of states of
the normal part. We show that the effect of the ferromagnet is twofold: It not only shifts the density of
states but also provides suppression of the gap. The mechanism of this suppression is remarkably similar
to that due to magnetic impurities. Our results are obtained from the solution of one-dimensional Usadel
equation supplemented with boundary conditions for matrix current at both interfaces.

PACS. 74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 72.10.-d Theory of
electronic transport; scattering mechanisms – 74.78.-w Superconducting films and low-dimensional
structures – 75.70.-i Magnetic properties of thin films, surfaces, and interfaces

1 Introduction

The research on heterostructures that combine supercon-
ductors and ferromagnets has begun in sixties [1]. Still,
the F/S structures remain a subject of active experimen-
tal and theoretical investigation. New developments con-
cern Josephson, π-junctions [2], spin valves based on giant
magnetoresistance effect [3], triplet superconducting or-
dering [4], Andreev reflection phenomena in S − F trilay-
ers [5] and proposed detection of electron entanglement [6].

Near the F/S interface electrons are influenced by both
exchange field h of the ferromagnet and pair potential ∆
of the superconductor. Exchange field tends to split the
density of states so that the energy bands for different spin
directions are shifted in energy [7]. Besides, the exchange
field at F/S interfaces induces pair breaking, suppression
of the spectrum gap and even formation of a supercon-
ducting gapless state [8]. The latter is qualitatively sim-
ilar to the gapless state in superconductors with param-
agnetic impurities [9]. The exchange field is also active if
the ferromagnet is an insulator (FI): Although in this case
electrons can not penetrate the ferromagnet, they pick up
the exchange field while reflecting from the FI/S inter-
face [10,11]. This has been experimentally verified with
EuO-Al | Al2O3 | Al junctions [12].

The physics of F/S or FI/S structures is thus gov-
erned by two factors: i. electron states are modified by ∆
and h, ii. the ∆ and h are modified as a result of the modifi-
cation of electron states by virtue of self-consistency equa-
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tions. ∆ and h correspond to incompatible types of order-
ing that suppress each other and therefore compete rather
than collaborate. It was suggested [13] that S/N/FI struc-
tures can be used to get rid of the second factor. The buffer
normal metal effectively separates ∆ and h in space to
prevent their mutual suppression, provided its thickness
exceeds the superconducting coherence length. However,
the electrons in the normal do feel both superconducting
and ferromagnetic correlations. Varying the conductances
of the S/N and N/FI interfaces it is possible to tune the
strength of these correlations.

If there are no ferromagnetic correlations, the tradi-
tional proximity effect in S/N structures takes place. A
S/N interface couples electrons and holes in the normal
metal by the coherent process of Andreev reflection [14]
at energies ε � ∆ [15], so that Andreev bound states are
formed [16]. If the normal metal is connected to the bulk
superconductor only, there is a (mini) gap in the spec-
trum of these states. The energy scale of the gap is not ∆.
Rather, it is set by the inverse escape time into the super-
conductor, �/τE � ∆. This minigap was first predicted in
reference [17] and has been intensively investigated [18].
A common realistic assumption is that diffusive transport
takes place in the normal metal [19]. In this case, the su-
perconducting proximity effect is described by the Usadel
equation [20].

The S/N/FI structures can be used to achieve an
absolute spin-valve effect [13]. The collaboration of su-
perconducting and ferromagnetic correlations results in a
spin-split BCS-like DOS in the normal metal part, very
much like in a BCS superconductor in the presence of the
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spin magnetic field [7]. However, the effective exchange
field h̃ and proximity gap ∆̃ characterizing the DOS in
this case [13], are parametrically different from h and ∆
in the ferromagnet and superconductor. In particular, the
fact that the effective exchange field h̃ affects electrons in
all points of the normal part of a S/N/FI structure, does
not imply to that the “real” exchange field h in the fer-
romagnet penetrates into N by an appreciable distance.
Actually it is known that h only penetrates up to distances
of the Fermi wavelength in the normal part. Rather, the
effect of h̃ is due to the extended nature of the electron
wave functions in N , which probe the spin dependent po-
tential at the FI/N interface and carry the information
about this potential throughout the whole normal metal
region.

Two such stuctures with normal metal parts con-
nected by a tunnel junction constitute the absolute spin
valve [13]. The presence of a normal metal is essential
to provide a physical separation between the sources of
superconducting and magnetic correlations so that super-
conductivity and magnetism do not compete. The fact
that the magnet is an insulator guarantees the absence
of the normal electrons at the Fermi level and thus en-
ables the proximity gap. The spin-valve effect mentioned
would not be absolute if the ferromagnet is a metal. In
this case, there would be a finite density of states at any
energy due to the possible electron escape into the ferro-
magnet. Besides, the use of a insulator does not require
nearly fully spin polarized ferromagnets (half-metal mate-
rials) to achieve an absolute spin-valve effect.

The analysis of reference [13] was restricted to the so-
called “circuit-theory” limit [23]. The variation of Green
functions along the normal part was disregarded. This is
justified if the resistance of the normal metal part is much
smaller than both the resistance of the S/N interface and
effective spin-mixing resistance characterizing the N/FI
interface.

In the present paper, we extend this analysis to ar-
bitrary resistances of the diffusive normal metal part. To
do so, we analyse the solutions of one-dimensional Us-
adel equation [20] in the normal part. Our goal is to find
the gaps in the spectrum for both spin directions. The
equation must be supplemented by boundary conditions
at both magnetic and superconducting interfaces.

Microscopic models for interfaces of mesoscopic struc-
tures have been extensively studied in past years com-
bining the scattering matrix approach and quasiclassical
Green’s function theory [21–24]. In the case of diffusive
conductors the interfaces can be described in a com-
pact/transparent way by means of “circuit theory” bound-
ary conditions [23]. In that case the interface is described
by a set of conductance parameters given as certain spe-
cific combinations of the reflection and/or transmission
amplitudes of the scattering matrix associated with the
interface. The regime of diffusive transport considered is
distinct from the (quasi)ballistic regime assumed in many
studies of F/S structures [10,11,25].

To summarize the results shortly, we have shown that
the effect of magnetic correlations is twofold. Firstly, these

correlations shift the BCS-like densities of states in en-
ergy, with shifts being opposite for opposite spin direc-
tions [7,11,13]. In the first approximation, the absolute
value of the proximity gap is not affected by the ferro-
magnetic insulator. Secondly, we have also found that the
magnetic correlations may suppress the gap. The gap com-
pletely dissapears at some critical values of the parame-
ters. This is qualitatively different from reference [13] and
presents the effect of the resistance of the normal metal.

The mechanism of the gap suppression appears to be
surprisingly similar to that due to paramagnetic impuri-
ties [9]. At qualitative level, this has been noticed in the
context of FI/S structures [10,11]. However, for S/N/FI
structures the analogy becomes closer: the gap closing in
a certain limit (see Sect. 5) is described by equations iden-
tical to those of reference [9]. We stress that there are no
magnetic impurities in our model and the quasiparticles
are affected by magnetism only when they are reflected
at the N/FI boundary. Effective spin-flip time thus arises
from interplay of magnetic correlations and diffusive scat-
tering in the normal metal. As we have already mentioned,
the spectrum gap suppression in S/N/FI structures is not
accompanied by suppression of the pair potential, this is
in distinction from the situation described in [9–11].

The structure of the article is as follows. In Section 2
we introduce the basic equations and define the matrix
current in the diffusive normal metal. In Section 3, we
specify the boundary conditions for the Usadel equation
by imposing matrix current conservation at the interfaces
of our S/N/FI system. The resulting set of equations al-
lows us to calculate the total Green’s function Ǧ at any
point in the diffusive wire. Analytical solutions can be only
found in two limiting cases (Sects. 4 and 5). Further on, we
solve numerically the equations for general values of the
parameters to obtain the general boundary in parameter
space that separates gap and no-gap solutions (Sect. 6).
We conclude in Section 7.

2 Matrix current and Usadel equation

Let us consider a S/N/FI structure with the diffusive
normal metal in the form of a slab of length L and cross-
section S. This accounts both for sandwich L � √

S and
wire L � √

S geometries. The Usadel equation in the
normal part can be presented as

GN
∂

∂x

(
Ǧ(x)

∂

∂x
Ǧ(x)

)
= −i

G̃Q

δ

[
ε τ̌3, Ǧ(x)

]
(1)

where GN = σ S/L is the conductance associated with
the diffusive metal, σ being its conductivity, G̃Q = e2/�,
δ ∝ 1/SL is the average level spacing in the metal and
ε is the energy of the quasiparticles (electrons and holes)
with respect to the Fermi energy EF . Ǧ(x) is an isotropic
quasiclassical Green’s function in Keldysh⊗Nambu⊗Spin
space, which is denoted by (∨). In equation (1), x is the co-
ordinate normalized to the length L, x = 0(1) correspond-
ing to the superconducting (ferromagnetic) interface.
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It is convenient to define the matrix current [23] as

Ǐ

GN
= −Ǧ(x)

∂

∂x
Ǧ(x). (2)

Substituting equation (2) into equation (1) we present the
latter as conservation law of the matrix current:

∂

∂x

(−Ǐ
)

= Ǐleakage(x) → Ǐ0−Ǐ1 =
∫ 1

0

dxǏleakage(x), (3)

where “leakage” current Ǐleakage(x) = −i

G̃Q

[
ε τ̌3/δ, Ǧ(x)

]
. Note that the leakage current

Ǐleakage(x) does not contribute to the nonequilib-
rium (physical) charge current, given the fact that its
Keldysh component is zero. This implies that the physical
(charge) current is conserved through the system, as
expected. On the other hand, the diagonal components
of Ǐleakage(x) in Keldysh space (Retarded and Advanced
components Î

R(A)
leakage(x)), which are proportional to the

energy ε, describe decoherence between electrons and
holes.

By solving the Usadel equation in the normal metal,
we obtain the Green’s function Ǧ(x) that contains
information about the equilibrium spectral properties
(ĜR(A)(x)) and about the nonequilibrium transport prop-
erties (ĜK(x)) [26]. In this paper we concentrate on spec-
tral properties of the diffusive wire, so from now on we
restrict ourselves to the retarded block in Keldysh space.
This is denoted by (̂). Note that the retarded Green’s
function ĜR(x) ≡ Ĝ(x) is still a matrix of general struc-
ture in Nambu⊗Spin space.

If there is a single ferromagnetic element in the sys-
tem, Ĝ(x) is diagonal in spin space and can separated
into two blocks for spin parallel (↑) and antiparallel (↓)
to the magnetization of the ferromagnet. For each spin
component, Ĝ(x) can be parametrized in Nambu space as
Ĝ(x) = cos θ(x) τ̂3 +sin θ(x) cosφ(x) τ̂1 +sin θ(x) sin φ(x)
τ̂2, τ̂1,2,3 being Pauli matrices. If there is a single super-
conducting reservoir attached to the normal metal, the
transport properties will not depend on the absolute phase
of the superconductor, so that φ(x) can be set to zero
φ(x) = 0. Then Ĝ(x) depends on one parameter only:
Ĝ(x) = cos θ(x) τ̂3 + sin θ(x) τ̂1. The phase (difference)
φ(x) maybe important if the normal metal is connected
to two or more superconducting reservoirs.

Using this parameterization for Ĝ(x), the retarded
block of equations (1) and (2) transforms into a differ-
ential equation for the angle θ(x):

∂2

∂x2
θ(x) + i

2ε

ET
sin θ(x) = 0 (4)

and
Î = −i GN

∂θ(x)
∂x

τ̂2 (5)

where we have introduced ET = �D/L2 ≡ GN δ/G̃Q, the
Thouless energy associated with the normal metal.

  

  

 

 

 

 

Fig. 1. Matrix current and boundary conditions. Circuit-
theory expressions give matrix currents ÎS, ÎF from the cor-
responding reservoirs. These currents should match matrix
currents Î0,1 from the Usadel equation, defined via derivatives
of Green functions. This fixes the boundary conditions for the
Usadel equation.

3 Boundary conditions

Circuit theory allows to find the boundary conditions at
the interfaces of the normal metal in contact with the
reservoirs simply by imposing matrix current conserva-
tion at these points. The matrix currents to the reservoirs
are given by circuit theory expressions. (Fig. 1). We will
assume that the superconducting reservoir is coupled to
the normal metal through a tunnel contact. In addition,
we disregard energy dependence of Green functions in the
reservoir assuming that the energy scale of interest is much
smaller than the superconducting energy gap ∆ in the
reservoir. Under these assumptions, the retarded Green
function in the reservoir is just τ̂1. The matrix current to
the reservoir thus reads

ÎS =
GS

2

[
τ̂1, Ĝ(x)

]
. (6)

To describe the matrix current to ferromagnetic insulator,
we use the results of our previous work [27] where we
obtain

ÎF = i
Gφ

2

[

M 
̂σ τ̂3, Ĝ(x)

]
, (7)


σ being matrices in spin space, 
M being the magnetization
vector of the ferromagnet.

The parameter Gφ has a dimension of conductance
and is related to the imaginary part of so-called mixing
conductance Gφ =ImG↑↓. Mixing conductance has been
introduced in reference [28] to describe the spin-flip of
electrons reflected from a ferromagnetic boundary and is,
in general, a complex number. For insulating ferromagnet
it is however purely imaginary. In that case, Gφ acts as
an effective magnetic field. Such spin-dependent scattering
situation is shown to be important in magnetic insulator
materials [12] and half-metallic magnets [29]. Evaluation
of Gφ for a simple model of insulating ferromagnet can be
found in reference [13].

Using the parameterization in terms of θ(x), we find

ÎS = −GS cos θ0 τ̂2 (8)
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and
ÎFI = ±iGφ sin θ1 τ̂2, (9)

where the +(−) sign corresponds to up (down) direction
of spin with respect to the magnetization axis of the fer-
romagnet, θ0 = θ(0) and θ1 = θ(1).

Equating ÎS = Î0, ÎFI = Î1 gives the boundary condi-
tions required,

−gS cos θ0 =
∂θ(x)
∂x

|0 (10)

±igφ sin θ1 =
∂θ(x)
∂x

|1 (11)

where we have introduced two important dimensionless
parameters characterizing the structure: gS = GS/GN ,
gφ = Gφ/GN . As above, ± denotes two spin directions.

The solutions of the Usadel equation generally corre-
spond to complex θ. The density of states in a given point
at a given energy is ν(ε, x) = ν0Re[cos(θ(ε, x))], ν0 being
the density of states in the absence of proximity effect. In
this paper, we concentrate on gap solutions where ν = 0
everywhere in the normal metal.

For this porpuse, it is convenient to define the complex
angle θ(x) = π/2 + i µ(x). Real µ(x) corresponds to gap
solution. In terms of this angle, the full system to solve
reads

∂2

∂x2
µ(x) + ε̃ coshµ(x) = 0 (12)

+gS sinh µ0 =
∂µ(x)

∂x
|0 (13)

±gφ coshµ1 =
∂µ(x)

∂x
|1 (14)

where we introduce the dimensionless energy ε̃ = 2 ε/ET .
The gap solutions exist in a certain region of the three-
dimensional parameter space (gS , gφ, ε̃). To determine the
boundary of this region is our primary task.

There are three limits where the solutions can be ob-
tained analytically. The limit of vanishing resistance of the
normal metal, gS � gφ � ε̃, can be treated with circuit
theory and has been considered in reference [13]. Below
we address the zero energy limit (ε̃ ≈ 0) and “spin-flip”
limit (gS � g2

φ � 1).

4 Zero energy

Here we will analyze the gap solutions at the Fermi
level, that is, at zero energy. In this case the leak-
age current conveniently dissapears, Ǐleakage(x) = 0 and
Î = const. Equation (2) can be easily integrated giving
Ĝ1 = exp(Î/GN )Ĝ0, where Ĝ0(1) = Ĝ(0(1)). From this
we obtain

Î = −GN

2

arccos
(
Tr

(
Ĝ0 Ĝ1

))
√

4 −
(
Tr

(
Ĝ0 Ĝ1

))2

[
Ĝ0, Ĝ1

]
, (15)

0

0.2

0.4

0.6

1

0.8

0 2 4 6 8 10

s

g

g

�

0�

0

0.001

0.01

0.1

1

s

s

s

s

s

g

g

g

g

g

�
�
�
�
�

*

0�

Sg

(a)

(b)

*g�

0 1 2 3 4 5
0

0.2

0.4

0.6

1

0.8

( 0)g� � �

0.663g� �
( )Sg ��

Fig. 2. (a) gφ/gS versus µ0 for various values of gS (Eq. (18)).
The maximum achieved at µ∗

0 gives the maximum gφ at which
the gap persists at given gS. (b) The maximum g∗

φ versus gS.
The curve saturates at gφ ≈ 0.663 for gS → ∞.

which can be further simplified by using the parameteri-
zation Ĝ0(1) = cos θ0(1) τ̂3 + sin θ0(1) τ̂1 into the follow-
ing simple expression for the current through the diffusive
normal metal:

Î = −i GN (θ0 − θ1)τ̂2 = GN (µ0 − µ1)τ̂2. (16)

Taking into account the boundary conditions on both in-
terfaces, we obtain the equations for µ0,1,

gS sinh µ0 = µ1 − µ0 = ±gφ coshµ1. (17)

We can readily express from these two equations gφ/gS

as a function of µ0 and gS

gφ

gS
=

sinh µ0

cosh (µ0 + gS sinh µ0)
= f(µ0, gS). (18)

Here we concentrate on the spin-up component. The so-
lution for spin-down component corresponds to different
sign of µ0. In Figure 2a, we plot gφ/gS versus µ0 for
several values of gS . We see that gφ/gS reaches a max-
imum value (gφ/gS)∗ at a certain value µ∗

0. The position
and the height of the maximum changes by changing gS ,
µ(0)∗ → ∞, (gφ/gS)∗ → 1 if gS → 0.

So for a given gS , the maximum possible value of gφ

such as there is still a gap in the induced density of states
of the wire is given by

g∗φ = f(µ∗
0, gS)gS . (19)
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In Figure 2b we plot g∗φ as a function of gS. This curve
defines the boundary between gap (below) region and no
gap (above) region in gφ − gS parameter space at zero
energy ε = 0. As expected, magnetic correlations combat
the proximity effect at the Fermi level and the gap solu-
tions dissapears upon increasing gφ. Even if the coupling
to the superconductor is infinitely strong, gS → ∞, the
gap survives only if gφ < 0.663.

Let us expand gφ/gS near its maximum value (gφ/gS)∗.
Defining deviations from this point ∆gφ−S = (gφ/gS) −
(gφ/gS)∗ and µ̄ = µ0 − µ∗

0, the expansion is obviously

∆gφ−S = − C µ̄2 (20)

C being a positive constant. Let us note that the density of
states ν(0)/ν0 = Im sinh(µ0) ∝ Imµ̄. This gives a square-
root singularity of the density of states near the boundary,

ν ∝ √
∆gφ−S . (21)

The limit gS → 0 deserves some special consideration. It
corresponds to the circuit-theory limit where the diffu-
sive normal metal simply reduces to a “node” with spa-
tially independent Green’s function Ǧ. This gives how-
ever, a BCS-like inverse square-root singularity in the
density of states at the boundary given at gS = gφ,
ν/ν0 = 1/

√
1 − (gS/gφ)2 ≈ 1/

√
2∆gφ−S at ∆gφ−S � 1.

This result looks difficult to reconcile with the result ob-
tained in equation (21).

The point is that for gS � 1 an extra crossover
takes place such the density of states changes from inverse
square root to square root. The crossover occurs close to
the gap boundary gS = gφ. From equation (18) it is clear
that for gS � 1, the values of gφ/gS � 1 occur at µ0 � 1.
Close to the boundary, an expansion of equation (18) up
to terms ∼ exp(−2µ0) is possible. The evaluation of the
maximum of gφ/gS as function of µ0 allows to determine
the constant C in equation (20), C � g

4/3
S . The crossover

occurs then at ∆gφ−S � g
2/3
S � 1. Below the crossover, at

∆gφ−S � g
2/3
S , there is a square-root singularity ν/ν0 ∝

g
−2/3
S

√
∆gφ−S that changes to ν/ν0 � 1/

√
2∆gφ−S above

the crossover, at ∆gφ−S � g
2/3
S . The maximum density of

states is therefore ν/ν0 � g
−1/3
S .

5 “Spin-flip” limit

Now we would like to extend the results of the previous
section to finite energy ε. We do this assuming that the
Green function does not change much along the normal
metal, so that |θ1 − θ0| � θ0.

We start again with equations (4), (10) and (11) . In-
tegrating equation (4) over x and using equations (10)
and (11) gives

±igφ sin θ1 + gS cos θ0 + i ε̃

∫ 1

0

dx sin θ(x) = 0. (22)

If we assume that the Green function does not change with
x, θ(x) = θ0, we derive from equation (22) the circuit-
theory equation

i (ε̃ ± gφ) sin θ0 + gS cos θ0 = 0. (23)

With this, we reproduce the results discussed in refer-
ence [13]: the density of states mimics the one of a BCS
superconductor in the presence of the spin-splitting mag-
netic field

υ(ε̃) =
|ε̃ ± gφ|√

(ε̃ ± gφ)2 − g2
S

. (24)

The presence of a gap is strictly speaking a non-
perturbative effect. The perturbation expansion of the
density of states shown in equation (24) is valid at high
energies |ε ± h̃| � ∆̃. The leading “spin-dependent” cor-
rection is proportional to (∆̃2h̃)/ε3 ≡ (g2

Sgφ)/ε̃3. This
implies that the leading diagram in perturbation series
involves four tunneling amplitudes at the S/N inter-
face and two spin-dependent reflection amplitudes at the
N/FI interface.

The equation (23) is correct in the leading order in
ε̃, gS , gφ � 1. There can be however a problem if ε̃ is too
close to ∓gφ since the first coefficient is anomalously small
in this case. To account for this, we should re-derive these
equations to the next-to-leading order.

We present θ(x) in the form that satisfies boundary
conditions,

θ(x) = θ0 + (θ1 − θ0)x + θ(1)(x); θ(1)(0) = θ(1)(1) = 0
(25)

and evaluate the corrections θ1 − θ0, θ
(1)(x) in the leading

order. To evaluate θ1 − θ0, let us multiply equation (4) by
x and integrate by parts the first term

∫ 1

0
dx x θ̈(x) where

(θ̈(x) ≡ ∂2θ(x)/∂x2), obtaining the following expression

θ̇1 − (θ1 − θ0) + i ε̃

∫ 1

0

dx x sin θ(x) = 0. (26)

We set θ(x) = θ0 under the sign of integral and use equa-
tion (11) to obtain

θ1 − θ0 = i

(
±gφ +

ε̃

2

)
sin θ0. (27)

With the same accuracy, the differential equation for
θ(1)(x) reads

∂2

∂x2
θ(1)(x) + i ε̃ sin (θ0) = 0. (28)

This results in

θ(1)(x) ≈ i ε̃
sin θ0

2
(x − x2). (29)

Finally we substitute equations (29) to equation (22) to
get the following relation:

i (ε̃ ± gφ) sin θ0 + gS cos θ0 − ζgS sin θ0 cos θ0 = 0, (30)



378 The European Physical Journal B

where ζ =
(
g2

φ ± gφε̃ + ε̃2/3
)

/gS. As we mentioned
above, ζ plays a role only if |ε̃ ± gφ| � ε̃, gφ. Under these
conditions, the energy dependence of ζ can be disregarded
and ζ = g2

φ/3gS.
The relation (30) resembles very much one of the most

important equations in the superconductivity theory that
was first derived by Abrikosov and Gor’kov [9] to describe
suppression of superconductivity by magnetic impurities.
Precise association is achieved by the following change of
notations:

(ε̃ ± gφ)ET → E,

gSET → ∆,

ζ∆ = ET g2
φ/3 → 1/τs

where E, ∆, τs are respectively energy, superconducting
order parameter and spin-flip time due to magnetic im-
purities [9]. This is why we refer to the limit under con-
sideration as to “spin-flip” limit. To remind, there are no
magnetic impurities in the structure considered, and ef-
fective spin-flip comes from interplay of diffusion in the
normal metal and reflection at the N/FI interface.

Maki has demonstrated that similar equation accounts
for gapless superconductivity in a variety of circum-
stances, ζ being the pair-breaking parameter [30]. We de-
fine θ0 = π/2+ i µ0, u = tanhµ0, ω = (ε̃ ± gφ) /gS, to be
close to notations of reference [30]. This gives

ω = u

(
1 − ζ

1√
1 − u2

)
. (31)

The maximum value of ω with respect to real u, ω∗ gives
the energy interval around ε̃ = ∓gφ where the gap so-
lutions occur. This value is determined by the condition
∂ω/∂u = 0, which gives

ω∗ =
(
1 − ζ2/3

)3/2

(32)

achieved at u = u∗,

u∗ =
(
1 − ζ2/3

)1/2

. (33)

There are no gap solutions if ζ > 1. The region where
these solutions do occur is sketched in Figure 3a in ε̃− gφ

coordinates. It looks like a 45◦ slanted strip, the width
of the stip in horizontal direction being given by 2ω∗gS .
Near the origin ζ = 0. In this situation, it is obtained from
equations (32, 33) that the width is 2gS and |ε̃ ± gφ| =
gS . The gap solutions at zero energy ε̃ = 0 dissapear at
gφ = gS . The width gradually reduces with increasing gφ

due to the increase of ζ. The strip ends if ζ = 1, that is,
at |gφ| =

√
3gS � gS (Fig. 3b).

This demonstrates that even in the limit of gφ, gS � 1
the ferromagnetic insulator not only shifts the gap states
but also reduces and finally suppresses the gap due to
effective spin-flip. We show in the next section that the
same picture is qualitatively valid for arbitrary values of
these parameters.

g�

Sg
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

( 0)g� � �

3 Sg

*

0 1( , , / )Sg g g� �� �

(a)

(b)

Sg�
Sg	

�

g �




Sg

1Sg <<

Sg g� � �
�


	�0� �

1� �
g� � �


3 sg g� �
*2 Sg�

Fig. 3. (a) The sketch of the gap domain in ε̃ − gφ plane at
gS � 1. (b) Exact results (squares) for the maximum gφ at
ζ = 1, follow the expected

√
3gS dependence for small gS. The

lower curve is the one plotted in Figure 2.

6 Gap-no gap boundary in general case

So far we have studied the boundary separating gap and
no-gap solutions in the parameter space for two limiting
cases that allow for analytic solutions. In this section, we
find this boundary for arbitrary values of the parameters.
We do this by solving equations (12–14) numerically.

Since we only concern with the boundary, the numer-
ical procedure is as follows. We fix gS and ε̃. The solu-
tions of equation (12) with boundary condition (13) can
be parametrized with µ0. We express µ1, µ̇1 in terms of µ0.
Then the last boundary condition (14) could be solved to
find µ0 in terms of gφ. We do the opposite: We use (14)
to directly express gφ in terms of µ0 and find the two
extrema of gφ(µ0). Those give the endpoints of the inter-
val of gφ where the gap solutions exist — elements of the
boundary. We plot these endpoints at fixed gS versus di-
mensionless energy ε̃ to obtain slanted strips similar to
the one in Figure 3a. At certain energy, the extrema come
together indicating the endpoint of the strip.

In Figure 4 we show these strips in gφ − ε̃ plane for
a wide range of values of gS . As expected from the pre-
vious discussion, for gS � 1 the strips extend along the
gφ = ε̃ line. The sharp tip of each strip gives the critical
value of gφ at which for a given gS the induced minigap
disappears. For small gS, the height of the tip,

√
3gS, is
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Fig. 4. The gap domains (strips) in gφ − ε̃ plane calculated
for different values of gS = [0.1, 0.2, .., 50,∞]. Their shape is
similar to the sketch in Figure 3a. The tip of each strip gives
the maximum value of gφ at which the gap survives and simul-
taneously the corresponding energy.

much bigger than the width of the strip gS . With increas-
ing gS, the shape of the strips changes. They increase both
in width and height, so that these dimensions become of
the same order. The strips also become less slanted. The
shape converges at gS → ∞ (outer curve in Fig. 4). In this
limit, the maximum gφ that allows for superconductivity is
≈2.68 and is achieved at ε̃ ≈ 4.71. It is interesting to note
that this energy is higher than the maximum value of the
minigap without magnetic correlations (ε̃(gφ = 0) = π/2,
see Fig. 4). Counterintuitevely, the presence of the mag-
netic insulator helps the gap solutions to persist at higher
energy. Albeit the magnetic correlations quickly remove
these solutions from the Fermi level.

Each strip is a cross-section of the boundary surface in
three-dimensional (gφ, gS , ε̃) space. We present in Figure 5
the side view of this surface. The lower curve in this figure
is the cross-section of the surface with ε̃ = 0 plane and
shows the critical value of gφ at which the gap solutions
dissapears from the Fermi level. The same curve has been
already presented in Figure 2. The upper curve gives the
critical value of gφ at which gap solutions dissapears at any
energy. It consists of the tips of each strip from Figure 4
as a function of gS. We see that at gS → ∞ this curve
satures at gφ = 2.68. The asymptotics gφ =

√
3gS derived

in the previous section agree with this curve at gφ < 1 as
expected.

7 Conclusions

We have studied the proximity effect in S/N/FI struc-
tures with N being a diffusive normal metal. We pay spe-
cial attention to the gap in the density of states and find
its domain in the parameter space. The convenient di-
mensionless parameters to work with are gφ, gS that char-
acterize the intensity of magnetic and superconducting
correlations respectively, and energy in units of Thouless
energy, ε̃.
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Fig. 5. Side view of the boundary surface in three-dimensional
(gS, gφ, ε̃) space. The upper curve gives the maximum gφ con-
necting the tips of the strips plotted in Figure 4. It rises mono-
tonically with gS to reach the asymptotic value � 2.68 at
gS → ∞. The lower curve presents a cross-section of the surface
with the ε̃ = 0 plane.

We demonstrate that the combined effect of a ferro-
magnetic insulator and the elastic scattering on the prox-
imity gap of a diffusive wire is twofold. First, the ferro-
magnetic insulator provides an effective exchange field h̃
that shifts the gap edges in opposite directions for op-
posite components without reducing the energy interval
where the gap solutions occur. Second, its effect com-
bined with sufficiently strong elastic scattering in N re-
duces this interval and finally suppresses the gap. In the
limit of small gS , gφ (“spin-flip” limit) the mechanism of
this suppression is precisely equivalent to the known one
from magnetic impurities, with an effective spin-flip rate
1/τs = g2

φET /3. Qualitatively, this picture remains valid
at arbitrary parameters.

If gφ > 0.66 no gap persist at the Fermi level. If gφ >
2.68 no gap occurs at any energy. Counterintuitevely, the
gap in the presence of magnetic correlations may occur at
energies higher than in the absence of the ferromagnetic
insulator.

The absence or the presence of the gap in the normal
part of a S/N/FI structure at certain energy can be ob-
served by a spin-sensitive tunnel probe. The resistance of
such probe must exceed all interface resistances. The pos-
sible implementation of the probe depends on its concrete
geometry. For traditional sandwich geometry, it is proba-
bly simpler to keep the FI layer rather thin, so that the
electrons can tunnel through. Covering this layer with a
conducting ferromagnet makes the tunnel probe. For the
wire geometry, small tunnel contacts to ferromagnets can
be made in different points of the normal wire. An alter-
native is the suggestion of reference [13]: the tunneling
between two FI/N/S structures.
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